RIGHT (ICAO STANDARD)

UNPROTECTED AREA / DEAD SIDE OF THE HOLD

ONE COMPLETE LAP OF THE HOLD SHOULD TAKE 4 MINUTES

ABEAM POSITION START WATCH

GATE ANGLE

FROM THE ABEAM POSITION THE HOLD SHOULD TAKE 3 MINUTES

HOLDING (3)

RIGHT (ICAO STANDARD)

QDM $180^{\circ} /$ QDR 360°

This is allowing for ADF 'DIP ERROR'

RIGHT (ICAO STANDARD)

Position 1:
When in the base turn should the ADF read less than your Required inbound QDM anticipate undershooting the inbound QDM.

> 10 degrees error: Roll wings level

< 10 degrees error: reduce the angle of bank

Note:

Position 2:

When in the base turn should the ADF read more than your Required inbound QDM anticipate overshooting the inbound QDM.

Expect to continue turning through the inbound still wind heading to re-intercept The inbound QDM

Calculate the following from the holds depicted below:

Abeam QDM / QDR:

Gate Angle:

60 degree to go QDM / QDR:

Abeam QDM / QDR:

Gate Angle:

60 degree to go QDM / QDR:

LEFT (NONE STANDARD)

60 DEGREE TO GO HEADING (300°)

At the 60 degree to go heading, whilst still in The turn the ADF should indicate the published Inbound QDM (+/-5º

RBI:	-60°
RMI:	270°

This is allowing for ADF 'DIP ERROR'

Position 1:
When in the base turn should the ADF read more than you Required inbound QDM anticipate undershooting the inbound QDM

Expect to continue turning through the inbound still wind heading to re-intercept The inbound QDM

Position 2:
When in the base turn should the ADF read less than your Required inbound QDM anticipate overshooting the inbound QDM.
> 10 degrees error: Roll wings level
< 10 degrees error: reduce the angle of bank

Note:

When rolling wings level there is now no 'dip error'. When ADF reads Inbound QDM minus 10 degrees $\left(280^{\circ}\right)$ roll the aircraft to a rate one turn to intercept the inbound QDM.

LEFT (NONE STANDARD)

Calculate the following from the holds depicted below:

Abeam QDM / QDR:

Gate Angle:

60 degree to go QDM / QDR:

Abeam QDM / QDR:

Gate Angle:

60 degree to go QDM / QDR:

JOINS INTO THE HOLD

QDM 200°

JOINS INTO THE HOLD, SECTORS
RIGHT HAND HOLD

JOINS INTO THE HOLD, SECTORS

LEFT HAND HOLD

HOLDING (11)

JOINS INTO THE HOLD, SECTORS

RIGHT HAND HOLD

SECTOR 1

Over head the beacon / station passage:

1) Turn onto the outbound heading $\left(090^{\circ}\right)$
2) Start the watch
3) Report to ATC "call sign, taking up the hold, altitude. \qquad .."
4) Fly for one minute (still wind)
5) Turn into the hold / protected area (left)
6) Re-intercept the inbound QDM

HOLDING (12)

JOINS INTO THE HOLD, SECTORS

RIGHT HAND HOLD

SECTOR 2

HOLDING (13)

JOINS INTO THE HOLD, SECTORS

RIGHT HAND HOLD

HOLDING (14)

JOINS INTO THE HOLD, SECTORS

HOLDING (15)

JOINS INTO THE HOLD, SECTORS

RIGHT HAND HOLD

Calculate the following from the holds depicted below:

Sector 1 sectors:

Sector 2 sectors: \qquad

Sector 3A sectors: \qquad

Sector 3A perpendicular heading:

Sector 3B sectors: \qquad

HOLDING (16)

JOINS INTO THE HOLD, SECTORS

LEFT HAND HOLD

Calculate the following from the holds depicted below:

Sector 1 sectors:

Sector 2 sectors: \qquad

Sector 3A sectors: \qquad
Sector 3A perpendicular heading:

Sector 3B sectors

Sector 1 sectors:

Sector 2 sectors: \qquad

Sector 3A sectors: \qquad

Sector 3A perpendicular heading:

Sector 3B sectors: \qquad

HOLDING (17)

HOLDING WITH WIND

ABEAM POSITION

If no compensation is made for wind (such as above) the aircrafts track will be as depicted above. The following things will happen:

1) Initial turn onto the outbound head will have a reduced radius of turn due to the headwind component
2) The aircraft will drift to the right when flying outbound
3) The base turn will have an increased radius of turn due to the tailwind component
4) The aircraft will drift the left when on the inbound heading.

HOLDING WITH WIND

Maximum Drift (MD) is dependent on the wind speed (when within 60° of the aircrafts lateral axis)

Maximum Drift (MD) $=(60 /$ TAS $) \times$ wind speed

HOLDING (19)

ard

HOLDING WITH WIND

When the wind is between 0° and 59° of the direction of travel 'SINGLE DRIFT' must be calculated
(From slide 18): $\quad 60^{\circ}$ or more $=$ Maximum Drift

Therefore the following conclusion can be assumed:

Wind direction 10° off the initial still wind direction of travel $=1 / 6$ (0.17) maximum drift
Wind direction 15° off the initial still wind direction of travel $=1 / 4(0.25)$ maximum drift
Wind direction 20° off the initial still wind direction of travel $=2 / 5$ (0.4) maximum drift
Wind direction 30° off the initial still wind direction of travel $=1 / 2(0.5)$ maximum drift
Wind direction 40° off the initial still wind direction of travel $=2 / 3$ (0.67) maximum drift
Wind direction 45° off the initial still wind direction of travel $=3 / 4(0.75)$ maximum drift

Wind direction 50° off the initial still wind direction of travel $=5 / 6(0.83)$ maximum drift

Quick method by using watch face:

Assumption: degrees = seconds for this method

$10=1 / 6$ of the watch face therefore the amount of single drift that shall be used is $1 / 6$ Of the maximum drift.

If maximum drift equated to 20° then single drift in this example would equate to 4°

HOLDING WITH WIND

RULE OF THUMB:

IF THE WIND DIRECTION IS WITHIN $0^{\circ}-30^{\circ}$ OF THE OUTBOUND STILL WIND HEADING APPLY: $\mathbf{2} \mathbf{x}$ SINGLE DRIFT

IF THE WIND DIRECTION IS BETWEEN $31^{\circ}-59^{\circ}$ OF THE OUTBOUND STILL WIND HEADING APPLY 3 x SINGLE DIRFT

IF THE WIND DIRECTION IS BETWEEN 60 - 90 OF THE OUTBOUND STILL WIND HEADING APPLY 3 x MAXIMUM DRIFT

THE MAXIMUM AMOUNT OF DRIFT THAT CAN BE APPLIED TO THE OUTBOUND HEADING IS 30°

HOLDING WITH WIND
360° / 20 KTS

With a wind from the North (as depicted above) the flown hold is represented in green Maximum Drift (MD) $=10^{\circ}$

The wind is 90° off the still wind outbound heading $\left(090^{\circ}\right)$ therefore apply $3 \times$ maximum drift Outbound heading correction of - 30° (turning into wind)

Outbound heading $=060^{\circ}$

HOLDING WITH WIND
$360^{\circ} / 20$ KTS
bookeraviation

NEW GATE ANGLE
LESS THAN STILL WIND GATE ANGLE

TART THE WATCH ABEAM

$60^{\circ} \mathrm{TO}$ GO CHECKS (NO CHANGE)
NTART THE WATCH ABEAM OR WHEN WINGS ARE LEVEL

WHICH EVER IS THE LATTER \quad\begin{tabular}{l}
As depicted above the gate angle will change. A rule of thumb is that it

WOTl change by the amount of single drift. Using the above example the gate angle will be

Approximately 10° less than the still wind gate angle as single drift = 10°

\quad

Right Hand Hold: calculated outbound heading less than still wind assume gate angle less than still wind gate angle
\end{tabular}

HOLDING WITH WIND

NOTE 2: As depicted above the gate angle will change. A rule of thumb is that it Will change by the amount of single drift. Using the above example the gate angle will be Approximately 5° more than the still wind gate angle as single drift $=5^{\circ}$

Right Hand Hold: calculated outbound heading less than still wind assume gate angle less than still wind gate angle

When the wind is travel from this quadrant the aircraft Will experience the maximum amount of tailwind

HOLDING (25)

HOLDING WITH WIND

Same principal as calculating single drift but based this time on the lateral axis of the aircraft
360°
Therefore the following conclusion can be assumed:

Wind direction 10° off the lateral axis of the aircraft $=1 / 6(0.17)$ wind speed
Wind direction 15° off the lateral axis of the aircraft $=1 / 4(0.25)$ wind speed

Wind direction 20° off the lateral axis of the aircraft= $2 / 5(0.4)$ wind speed

Wind direction 30° off the lateral axis of the aircraft= $1 / 2(0.5)$ wind speed
Wind direction 40° off the lateral axis of the aircraft $=2 / 3(0.67)$ wind speed

Wind direction 45° off the lateral axis of the aircraft= $3 / 4(0.75)$ wind speed
Wind direction 50° off the lateral axis of the aircraft $=5 / 6(0.83)$ wind speed

DIRECTION OF TRAVEL
60°
60°
60°

Quick method by using watch face:

Assumption: degrees = seconds for this method

$30=1 / 3$ of the watch face therefore the amount of single drift that shall be used is $1 / 3$ Of the wind speed.

Apply Single Drift correction when tracking Inbound to the beacon to maintain a required QDM
60° TO GO CHECKS (NO CHANGE)

(Using the examples from slide 20-22)

The wind is 90° off the outbound still wind heading therefore there is no head / tail wind component.
Outbound time with this wind will be 01:00 (1 minute)

HOLDING (27)

HOLDING WITH WIND

START THE WATCH ABEAM
(NO CHANGE)
Apply single Drift correction when tracking
Inbound to the beacon to maintain a required QDM

(Using the examples from slide 23)

The wind is 30° off the outbound still wind heading therefore the headwind component is 10 kts .
Outbound time with this wind will be 01:10

HOLDING (28)

HOLDING WITH WIND

