ONE COMPLETE LAP OF THE HOLD SHOULD TAKE **4 MINUTES**

UNPROTECTED AREA / DEAD SIDE OF THE HOLD

RIGHT (ICAO STANDARD)

RIGHT (ICAO STANDARD)

FROM THE ABEAM POSITION THE HOLD SHOULD TAKE 3 MINUTES

QDM 270 °

<···

60°

60 DEGREE TO GO HEADING (210°)

At the 60 degree to go heading, whilst still in The turn the ADF should indicate the published Inbound QDM (+/- 5°)

> RBI: +60° RMI: 270°

This is allowing for ADF 'DIP ERROR'

HOLDING (5)

RIGHT (ICAO STANDARD)

Calculate the following from the holds depicted below:

Abeam QDM / QDR:
Gate Angle:
60 degree to go QDM / QDR:

Abeam QDM / QDR:
Gate Angle:
60 degree to go QDM / QDR:

HOLDING (6)

LEFT (NONE STANDARD)

Calculate the following from the holds depicted below:

2000 TOW 78	
CAT A/B: D6 ICTY	19
10	/

Abeam QDM / QDR:
Gate Angle:

60 degree to go QDM / QDR:....

Abeam QDM / QDR:
Gate Angle:
60 degree to go QDM / QDR:

JOINS INTO THE HOLD

© Airways Aero Association s Ltd

HOLDING (9)

JOINS INTO THE HOLD, SECTORS

RIGHT HAND HOLD

HOLDING (10)

JOINS INTO THE HOLD, SECTORS

LEFT HAND HOLD

(QDM 270 ° - 340°)

HOLDING (11)

JOINS INTO THE HOLD, SECTORS

RIGHT HAND HOLD

NOTE: THE DECISION OF WHICH JOING TO CONDUCT IS BASED UPONT HE AIRCRAFT HEADING WHILST MAINTAINING A CONSTANT TRACK

HOLDING (12)

JOINS INTO THE HOLD, SECTORS

RIGHT HAND HOLD

SECTOR 2

HOLDING (13)

JOINS INTO THE HOLD, SECTORS

RIGHT HAND HOLD

HOLDING (14)

JOINS INTO THE HOLD, SECTORS

HOLDING (15)

JOINS INTO THE HOLD, SECTORS

RIGHT HAND HOLD

Calculate the following from the holds depicted below:

Sector 1 sectors:
Sector 2 sectors:
Sector 3A sectors:
Sector 3A perpendicular heading:
Sector 3B sectors:

Sector 1 sectors:
Sector 2 sectors:
Sector 3A sectors:
Sector 3A perpendicular heading:
Sector 3B sectors:

HOLDING (16)

JOINS INTO THE HOLD, SECTORS

LEFT HAND HOLD

Sector 1 sectors:..... Sector 2 sectors:..... Sector 3A sectors:.... Sector 3A perpendicular heading:..... Sector 3B sectors:....

Calculate the following from the holds depicted below:

Sector 1 sectors:
Sector 2 sectors:
Sector 3A sectors:
Sector 3A perpendicular heading:
Sector 3B sectors:

If no compensation is made for wind (such as above) the aircrafts track will be as depicted above. The following things will happen:

- 1) Initial turn onto the outbound head will have a reduced radius of turn due to the headwind component
- 2) The aircraft will drift to the right when flying outbound
- 3) The base turn will have an increased radius of turn due to the tailwind component
- 4) The aircraft will drift the left when on the inbound heading.

YOU AS PILOTS MUST COMPENSATE FOR THIS

When the wind is between 0° and 59° of the direction of travel 'SINGLE DRIFT' must be calculated

(From slide 18): 60° or more = Maximum Drift
Therefore the following conclusion can be assumed:
Wind direction 10° off the initial still wind direction of travel = 1/6 (0.17) maximum drift
Wind direction 15° off the initial still wind direction of travel = ¼ (0.25) maximum drift
Wind direction 20° off the initial still wind direction of travel = 2/5 (0.4) maximum drift
Wind direction 30° off the initial still wind direction of travel = ½ (0.5) maximum drift
Wind direction 40° off the initial still wind direction of travel = 2/3 (0.67)maximum drift
Wind direction 45° off the initial still wind direction of travel = 5/6 (0.83) maximum drift

Quick method by using watch face:

Assumption: degrees = seconds for this method

10 = 1/6 of the watch face therefore the amount of single drift that shall be used is 1/6Of the maximum drift.

If maximum drift equated to 20° then single drift in this example would equate to 4°

THE MAXIMUM AMOUNT OF DRIFT THAT CAN BE APPLIED TO THE OUTBOUND HEADING IS 30°

IF THE WIND DIRECTION IS BETWEEN 60 – 90 OF THE OUTBOUND STILL WIND HEADING APPLY 3 x MAXIMUM DRIFT

IF THE WIND DIRECTION IS BETWEEN 31° – 59° OF THE OUTBOUND STILL WIND HEADING APPLY 3 × SINGLE DIRFT

IF THE WIND DIRECTION IS WITHIN 0° – 30° OF THE OUTBOUND STILL WIND HEADING APPLY: 2 x SINGLE DRIFT

RULE OF THUMB:

Outbound heading correction of - 30° (turning into wind)

Outbound heading = 060°

HOLDING (22)

USE + / - 1 SECOND FOR EVERY KNOT OF HEAD / TAIL WIND OUTBOUND ON THE HOLD.

HOLDING (26)

(Using the examples from slide 20 – 22)

The wind is 90° off the outbound still wind heading therefore there is no head / tail wind component.

Outbound time with this wind will be 01:00 (1 minute)

HOLDING (27)

