
The Computer in School: Tutor, Tool, Tutee

by Robert P. Taylor, II, Columbia University Teachers College

 

 

Editors’ Note:

Since it was published in 1980, a copy of Robert Taylor’s book, The Computer in the

School: Tutor, Tool, Tutee, has had a place of honor on the shelf above my desk. This

book of readings shaped the thinking of a generation of educational innovators.

We have previously republished seminal works from this text by Alfred Bork

(http://www.citejournal.org/vol2/iss4/seminal/article1.cfm

[http://www.citejournal.org/vol2/iss4/seminal/article1.cfm] ) and by Arthur

Luehrmann (http://www.citejournal.org/vol2/iss3/seminal/article1.cfm

[http://www.citejournal.org/vol2/iss3/seminal/article1.cfm] ), who coined the term

“computer literacy.” We now have the pleasure of republishing the introduction to

Tutor, Tool, Tutee by Taylor himself, who began in this fashion:

For the foreseeable future, computing will play an increasingly important role

in human learning. However, no one yet knows exactly how great that role will

eventually be, or precisely what form it will take. (p. 1)

Dave Moursund, last year’s recipient of the SITE Lifetime Achievement award, wrote

the original introduction to Tutor, Tool, Tutee, concluding:

http://www.citejournal.org/vol2/iss4/seminal/article1.cfm
http://www.citejournal.org/vol2/iss3/seminal/article1.cfm


Anyone wondering either what role computers can play in education or why

their incorporation into the curriculum should receive highest priority should

read this book from cover to cover, as soon as possible. (Preface, p. viii).

Taylor framed potential uses of the computer as (a) tutor, computer assisted

instruction in which the computer teaches the child, (b) tool, in which the computer

ampli韀�es ability to address academic tasks, and (c) tutee, in which students learn by

programming (tutoring) the computer.

Nearly a quarter-century later, we are well into that future that Taylor envisioned,

with a distance to go. This midpoint o�ers a useful vantage point for consideration of

the roots of the discipline, and where we may wish to go in the future.

We also encourage you to read Taylor’s companion re韀�ection piece, entitled

“Re韀�ections on The Computer in the School,” by clicking on the “Read related articles”

link on this page.

Introduction

FOR THE FORESEEABLE future, computing will play an increasingly important role in

human learning. However, no one yet knows exactly how great that role will

eventually be, or precisely what form it will 韀�nally take.

Few people outside the computing community have anything but the vaguest concept

of either that role or its form, for two reasons. First, technical innovation has come

so fast in computing that even the expert can barely keep up with it. Second, the

e�ort to apply computing to education is less than 25 years old and, though an

immense body of work has already accumulated, it has been poorly publicized to the

wider public. The media generally have tended to sporadically overrate a small subset

of developments in this 韀�eld while ignoring or giving only super韀�cial treatment to

the rest. Nevertheless, with the advent of microprocessors and the prospect they

a�ord of widely available computing power, thousands of educators and parents are



beginning to seriously ponder what the role of computing will be in human learning

and what action they can and should take to a�ect it.

This book is meant to help them. It does so by making readily available a number of

articles about the application of computing to education. Their authors, all pioneers

in this 韀�eld, have been directly or indirectly responsible for a great deal of work in

this area in the past decade, and the articles included re韀�ect upon and report that

work. Despite the extensive innovation in computing, much remains the

same�particularly in the way computer logic structures are related to human

thought structures. Thus what has already been examined and implemented can be of

surprising relevance. Teachers and other educators now entering this 韀�eld may

imagine they are breaking new ground when in fact they are not. Reading these

essays will discourage such fantasies. By presenting past accomplishments, the

essays will encourage the new entrant to use them and build upon them rather than

to blindly create them anew. The articles are therefore a key to the future as well as a

record of the past.

Such writings should be read by anyone interested in computing and education

because they suggest what has already been accomplished. To know what has already

been accomplished is the 韀�rst step, whether one merely wishes to 韀�nd out what the

韀�eld is like or whether one wishes to determine the point from which to begin one’s

own work. However, simply plunging into the 韀�eld and attempting to assimilate the

ideas may not work. Initially some conceptual help may be needed.

Approaching the Diverse, Technically Foreign Area

of Computing in Education

The application of computing to education encompasses a range of complex activity,

formidable in its apparent diversity even for those who are simultaneously both

computer specialists and educators. Approaching such a complex area for the 韀�rst

time, especially as a computing novice, can be very confusing. This book attempts to



minimize the unnecessary confusion three ways. First, by limiting the number of

authors included, it arbitrarily limits the diversity of what is presented. Second, by

presenting only articulate spokesmen, the issues and the work discussed are

presented in an intelligible fashion. Third, by introducing a succinct framework

(tutor/tool/tutee) for classifying all educational computing, the book provides the

reader with a simple scheme for intellectually grasping a somewhat chaotic range of

activities.

The major role of this introductory essay is to present the tutor/tool/tutee strategic

framework. The basic framework and a summary set of comments on each of the 韀�ve

authors are presented. Then, the application of the framework is demonstrated, in

terms of the work of those 韀�ve.

To assist the reader interested in understanding more of the context of the author’s

work, a brief biographical sketch precedes the presentation of that author’s articles.

To assist the reader interested in reading more of a particular author’s work, a short

selected biography for that author can be found at the end of the book

Tutor, Tool, Tutee � The Three Modes of Using

Computing in Education

The framework suggested for understanding the application of computing in

education depends upon seeing all computer use in such application as in one of

three modes. In the 韀�rst, the computer functions as a tutor. In the second, the

computer functions as a tool. In the third, the computer functions as paychecks a

tutee or student.

The Computer as Tutor

To function as a tutor in some subject, the computer must be programmed by

“experts” in programming and in that subject. The student is then tutored by the



computer executing the program(s). The computer presents some subject material,

the student responds, the computer evaluates the response, and, from the results of

the evaluation, determines what to present next. At its best, the computer tutor keeps

complete records on each student being tutored; it has at its disposal a wide range of

subject detail it can present; and it has an extensive and 韀�exible way to test and then

lead the student through the material. With appropriately well-designed software,

the computer tutor can easily and swiftly tailor its presentation to accommodate a

wide range of student di�erences.

Tutor mode typically requires many hours of expert work to produce one hour of

good tutoring, for any or all of several reasons. (a) As intuitive beings, humans are

much more 韀�exible than any machine, even a computer. (b) Creating a lesson to be

delivered by a human tutor requires less time because it omits much of the detail,

relying upon the spontaneous improvisation and performance of the instructor to 韀�ll

in both strategy and substance at the time of delivery. (c) Computers are still

relatively crude devices and the only means we have of programming them are

awkward and time-consuming. (d) Human instruction rarely aims to accommodate

individual di�erences because the normal classroom situation prohibits such

accommodation; hence lesson preparation and design are simpler and swifter.

Because such accommodation is possible with the computer as tutor, the substantive

and strategic details needed to individualize the lesson tend to get included, thus

often greatly lengthening lesson design and preparation time.

The Computer as Tool

To function as a tool, the classroom computer need only have some useful capability

programmed into it such as statistical analysis, super calculation, or word

processing. Students can then use it to help them in a variety of subjects. For

example, they might use it as a calculator in math and various science assignments,

as a map-making tool in geography, as a facile, tireless performer in music, or as a

text editor and copyist in English.



Because of their immediate and practical utility, many such tools have been

developed for business, science, industry, government, and other application areas,

such as higher education. Their use can pay o� handsomely in saving time and

preserving intellectual energy by transferring necessary but routine clerical tasks of a

tedious, mechanical kind to the computer. For example, the burdensome process of

producing hundreds or even thousands of employee paychecks can be largely

transferred to the computer through the use of accounting software; the tedious

recopying of edited manuscripts of texts or even music can be relegated to the

computer through word or musical notation processing software; the laborious

drawing of numerous intermediate frames for animated cartoons can be turned over

to the computer through graphics software; or the 韀�tting of a curve to experimental

data can be done by the computer through statistical software.

To use the computer as tutor and tool can both improve and enrich classroom

learning, and neither requires student or teacher to learn much about computers. By

the same measure, however, neither tutor nor tool mode confers upon the user much

of the general educational bene韀�t associated with using the computer in the third

mode, as tutee.

The Computer as Tutee

To use the computer as tutee is to tutor the computer; for that, the student or teacher

doing the tutoring must learn to program, to talk to the computer in a language it

understands. The bene韀�ts are several. First, because you can’t teach what you don’t

understand, the human tutor will learn what he or she is trying to teach the

computer. Second, by trying to realize broad teaching goals through software

constructed from the narrow capabilities of computer logic, the human tutor of the

computer will learn something both about how computers work and how his or her

own thinking works. Third, because no expensive predesigned tutor software is

necessary, no time is lost searching for such software and no money spent acquiring

it.



The computer makes a good “tutee” because of its dumbness, its patience, its

rigidity, and its capacity for being initialized and started over from scratch. Students

“teach” it how to tutor and how to be a tool. For example, they have taught it to tutor

younger students in arithmetic operations, to drill students on French verb endings,

to play monopoly, to calculate loan interest, to “speak” another computer language,

to draw maps, to generate animated pictures, and to invert melodies.

Learners gain new insights into their own thinking through learning to program, and

teachers have their understanding of education enriched and broadened as they see

how their students can bene韀�t from treating the computer as a tutee. As a result,

extended use of the computer as tutee can shift the focus of education in the

classroom from end product to process, from acquiring facts to manipulating and

understanding them.

Five Pioneers of the Application of Computing to

Education

Though many computer scientists have broad general interests, most have only a few

really dominant speci韀�c interests and those few are typically shaped and informed by

the individual scientist’s particular point of view. Before looking at the work of our

韀�ve authors in terms of the tutor/tool/tutee framework, therefore, it may be helpful

to summarize the dominant interests and point of view of each.

Alfred Bork

Bork is a physics professor at the University of California at Irvine where he has

directed the Physics Computer Development Project for a number of years. That

project produces computer-based material that can serve as the primary source from

which 韀�rst year physics is learned at Irvine. As this implies, Bork’s major interest is

the application of computing to physics instruction. His work strongly emphasizes

concept mastery, self-paced instruction, and computer-resident testing. Though his



work beautifully demonstrates how computer/student dialogs can function and how

graphics can be carefully and integrally used to enhance these dialogs, he does not

argue that all instruction should be computerized, even in a subject like physics. Bork

sees stand-alone computers as the major vehicle in the new generation of computer-

assisted learning. He is also careful to point out repeatedly that good software in any

reasonable quantity is more likely to be developed by software factories or institutes

than by individual professors, teachers, or researchers.

Thomas Dwyer

Dwyer is a computer scientist and educator at the University of Pittsburgh, who for a

number of years ran a series of projects involving high school and junior high school

teachers and students. The projects were characterized by an exploratory approach to

using computing, one which tended to depend upon and generate a new way of

looking at learning in the school, one which Dwyer himself dubbed “Solo-Mode”

learning. In such learning, the framework is provided by the teacher but the pupil

must work autonomously, learning to “韀�y solo.” This mode Dwyer contrasts with the

more usual classroom situation that keeps the teacher in complete control and has

the student “韀�ying dual.” Dwyer’s work stresses an heuristic, exploratory approach

based on principles rather than a closed one based upon a formula of what to do. He

places a heavy dependence upon the teacher as a supportive human being, stresses

that the teacher is crucial, and addresses teacher education as a major concern of any

attempt to use computing broadly and creatively in the schools. Though much of the

solo work dealt with math and physical science, Dwyer’s work through solo and

elsewhere also applied computing to other subjects, including music.

Arthur Luehrmann

Luehrmann is now associated with the Lawrence Hall of Science at Berkeley, where

he is directing projects to integrate computing into museum science exhibits to make

them interactive, and projects to teach computing to a broad, general public served



by the museum. Prior to going to Berkeley, he was a professor at Dartmouth and was

involved in many successful projects there, applying computing to instruction. As

several of his article titles suggest, his strongest emphasis is upon the computer as a

new and fundamental technology worthy of study on its own. He sees the mass

impact of this new technology as very substantial and stresses the need for popular

literacy, the need for everyone to acquire programming skills, and the need for a

good stand-alone personal computer. Though trained as a physicist, Luehrmann’s

work has dealt with applying computing in many instructional areas, not simply

those related to the physical sciences.

Seymour Papert

A professor of mathematics and an educator at M.I.T., Papert is best known for his

development of the LOGO language and its application to teaching computing and

mathematics to young children. His major thrust de韀�nitely is to teach a way of

mathematical thinking that young children can intuitively master. By encouraging

anthropomorphizing, play, and intuitive guesswork he tries to capitalize upon the

existing insights and mental frameworks of children. His strong attention to how and

what children are thinking is in part based upon his extended association with Piaget

in Switzerland. Papert’s work has been exploratory, centering on children’s use of

computing, emphasizing almost exclusively the child learning to program. It has

included imaginative use of robots, graphics, and sound as a child-attractive

alternative to traditional textual output. Throughout, the computer tends to be used

to create a problem-rich environment, presenting the child with interesting,

challenging problems that require a computer for solution.

Patrick Suppes

Suppes is a philosophy and mathematics professor at Stanford, where he pioneered

the development of computer-assisted instruction. His work stresses the applicability

of the computer to skill areas such as mathematics, logic, and language. It aims to



produce complete courses of instruction to be delivered by the computer. He has

always stressed how little we know about learning but has carefully used what is

available to design a considerable quantity of computer-assisted instruction. Much of

this instruction is on the market and in wide use on minicomputers. For example,

whole systems stressing mathematics and language arts skills are commercially

available through the Suppes-founded Computer Curriculum Corporation. His work

stresses individualized learning and increased educational productivity.

Using The Tutor/Tool/Tutee Framework

Now that the framework and the 韀�ve pioneers have been introduced, let’s look at

some of their writings in terms of the three modes of that framework. We will only

cite a few of the articles included in this book and will discuss none in detail; our aim

will be to merely suggest the framework’s utility. The authors speak well, even

brilliantly, for themselves and do so clearly enough to need no explanation. The

framework must be accurate enough for the reader to make the associations between

it and the articles for himself or herself.

Examples of the Tutor Mode

Historically, this mode has its roots in programmed instruction. However, when

properly deployed it is far more 韀�exible than any book- or material- based

programmed instruction. For one thing, in tutor mode, the material can be presented

interactively, and dynamic graphics and other sophisticated teaching aids can be

integrally used. For another thing (as pointed out earlier), in tutor mode the

performance history of one or more pupils can be collected and stored, then

subsequently used for evaluating the material and as a basis for routing a particular

pupil through the material. At the same time, this mode can be designed to move the

student at a wide range of speeds and to be interruptible more or less at the student’s

convenience. Though the label has been applied to broader applications than just this

one of using the computer as a tutor, this mode has often been called CAI (Computer-



Assisted Instruction), probably because the ancillary tasks it performs are similar to

those that could be performed by ideally competent teaching assistants.

The work of Bork and the work of Suppes both exemplify the tutor mode at its best.

All of their included articles deal with this model. Bork has concentrated much of his

thinking on how best to develop good tutor material for physics instruction, while

Suppes has developed material for a wide range of subjects. Both have used the

computer to store, analyze, and act upon student results, and both have used such

sophisticated peripheral devices as audio or graphics to maintain student

involvement and enrich the nature of the tutoring.

The time period encompassed by Suppes’ work alone reveals how many years have

already gone into work on tutor mode computing applications. The breadth of those

applications is suggested by his prepared statement for the Congressional hearings

on Computers and the Learning Society, “The Future of Computers in Education.” No

one who reads either that or his Marseilles conference article, “Impact of Computers

on Curriculum in the Schools and Universities,” will mistakenly believe that CAI on

microprocessors is completely new. One gets a sense of how much work goes into

producing good material in this mode by reading Bork’s detailed, “Preparing

Student-Computer Dialogs: Advice to Teachers,” or by reading his very thoughtful

“Learning about Graphics.” Anyone who would produce good tutor mode material

should certainly be thoroughly familiar with both these pieces.

This mode has had both its advocates and its critics. Criticism from those who are

deeply involved in computing and education is usually directed at those making

extreme claims about the positive bene韀�ts to be derived from tutor mode computing.

Good criticism of this kind is exempli韀�ed by Luehrmann’s “Should the Computer

Teach the Student or Vice-Versa?” Neither he nor any other pioneer, however, would

argue that tutor mode computing should not have a signi韀�cant place in education.

Examples of the Tool Mode



Tool mode is probably seen to be the major mode of computer use by most people

outside computing and education. Because it receives considerable attention and

encompasses such a wide range of activities, tool mode computing is popularly seen

as synonymous with computer use, period. For example, most business data

processing, whether routine accounting or word processing and o�ce automation,

uses the computer as a tool. Thus the school’s administrative activities use the

computer in a tool mode, from payroll and inventory to pupil scheduling and grade

reporting. Even library automation involves the computer merely as a tool.

In tool mode, the computer provides a service that the user needs and more or less

knows how to use. It is not primarily a teacher or tutor as in the tutor mode; it is not

user-alterable and not a set of raw building components as might be provided under

tutee mode. Use of the computer in tool mode may teach the user something during

use, but any such teaching is most likely accidental and not the result of any design

to teach. In tool mode computing, the user can only explore activities and ideas for

which the tool at hand is appropriate; one can explore musical inversion with a

composition and playback tool, but not a word processing tool or a regression

analysis tool.

Most people in computing and education frequently and creatively use the computer

in a tool mode, because of their everyday familiarity with computing capabilities.

However, possibly because they are familiar with such use, possibly for other

reasons, most computing-and-education people do not see this mode as something

they want to focus primary energy upon. All 韀�ve pioneers whose work is included in

this book 韀�t this general position. All assume heavy use must be made in education

of tool mode computing; none advocates it as most important or focuses his own

major interest upon it.

All 韀�ve have advocated the use of the computer as a calculator and a word processor,

and all have advocated various other tool mode uses as well. Bork and Suppes, for

example, suggest that the computer as a calculator and record keeper should be

available simultaneously to anyone using the computer in the tutor mode. Bork

further suggests that various graphic tool capabilities should be similarly available.



Dwyer, Luehrmann, and Papert all argue that various tool capabilities should be

available to be utilized by anyone who needs them in exploratory problem-solving,

writing, or anything else. Dwyer, for example, argues that the student 韀�ying solo on

the computer would freely utilize many of its tool capabilities as he pursued his

overall project.

Examples of the Tutee Mode

The tutee mode is the one upon which Dwyer, Luehrmann, and Papert focus their

energies. This book re韀�ects that.

One of the early and still one of the best arguments for this mode of computer

use is Luehrmann’s “Should the Computer Teach the Student, or Vice- Versa?”

In it, he argues that in teaching the computer, the child learns more deeply and

learns more about the process of learning than he or she does from being

tutored by software written by others. Papert extends the argument by

suggesting how children using the computer as a tutee may learn more of what

they should be learning of mathematics than they can in classrooms without

computers. This position is clearly articulated in both “Teaching Children

Thinking” and “Teaching Children to Be Mathematicians vs. Teaching about

Mathematics.” Dwyer extends the concept in a di�erent way in “Some

Principles for the Human Use of Computers in Education,” de韀�ning his now

well-known concept of solo-mode computing and showing how it relates to

the total curriculum question.

 

In these essays and others, all three suggest that in using the computer as tutee, the

learning the child experiences is qualitatively di�erent than he or she might

otherwise experience in any school setting. None downgrades the role of the teacher

in a tutee mode environment, but all see it as di�erent from the teacher’s typical role

now. Dwyer states the case very well for all three in his “Some Thoughts on

Computers and Greatness in Teaching.”



Papert suggests that the computer as tutee can, with appropriate graphic and robotic

capabilities, serve as a means to enable the child to link his or her experience to the

deep, fundamental mathematical ideas we most want children to learn. In his

“Personal Computing and Its Impact on Education,” he suggests that this may be the

only way to avoid having most children spend most of their time struggling within

the dismal reality of dissociate learning. Both in that essay and in “Computer-based

Microworlds as Incubators for Powerful Ideas,” Papert contrasts dissociate learning,

the attempt to somehow internalize great quantities of information apparently of no

use in the child’s world, with a more natural learning that resonates with the child’s

experience.

Using the Framework Without Becoming Blinded by

It

The tutor-tutee-tool framework has been presented to help those who would like to

get an organized initial grasp on an apparently complex 韀�eld. It will serve to

overcome hesitation and initial trauma. Of course it can and should be used later, so

long as it conveniently provides insight. It is a reasonably broad framework and

su�ers from no more shortcomings than any other schema or typology. As such a

schema though, it can divert attention from relevant insights when used too

slavishly.

Reasonable alternatives to this framework certainly can be advanced. They might be

entirely di�erent or be simple extensions of it. For example, I seriously considered

extending the tutor, tool, tutee framework to include a fourth mode, making it tutor,

tool, tutee, toy. There are numerous games, simulations, and models of many sorts

that one spontaneously classi韀�es as toys�they appear to have been created above all

to play with and enjoy, whatever other merits they might possess. I 韀�nally decided

against that extension, though, believing that such software is just as well subsumed

under one or more of the earlier three modes. The point is, one need not be bound by

this framework. If modifying it or replacing it by an alternative framework helps with



the process of internalizing the ideas advanced in the various articles, then such

modi韀�cation or replacement is in order.

The articles are the main thing. They provide a good introduction to computing and

education. If you prefer a di�erent order, follow it. If the framework gets in your

way, disregard it. But do read the articles�all 19.

Submit a Formal Commentary

http://www.citejournal.org/commentary-submission-guidelines/

